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Abstract

In this paper, the dynamic behavior of two parallel symmetric cracks under harmonic anti-plane shear
waves is studied using the non-local theory. For overcoming the mathematical difficulties, a one-dimen-
sional non-local kernel is used instead of a two-dimensional one for the problem to obtain the stress occurs
near the crack tips. The Fourier transform is applied and a mixed boundary value problem is formulated.
Then a set of dual integral equations is solved using the Schmidt method. Contrary to the classical
elasticity solution, it is found that no stress singularity is present at the crack tip. The non-local elastic
solutions yield a finite hoop stress at the crack tip, thus allowing for a fracture criterion based on the
maximum stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the lattice
parameter and the distance between two parallel cracks, respectively. � 2002 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

The last four decades have witnessed the inauguration of a novel theory of material bodies,
named the non-local mechanics. This was done primarily due to the efforts of Edelen [1], Eringen
[2], Green and Rivlin [3]. According to the non-local theory, the stress at a point X in a body
depends not only on the strain at point X but also on those at all other points of the body. This is
different from the classical theory. For the classical theory, the stress at a point X in a body
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depends only on the strain at point X. However, the solution of the classical theory contains
stress singularity. This is not reasonable according to the physical nature. In papers [4–7], the
state of stress near the tip of a sharp line crack in an elastic plate subjected to uniform tension,
in-plane shear and anti-plane shear are discussed. The field equations employed in the solutions
of these problems are those of the theory of the non-local elasticity. The solutions gave finite
stress at the crack tips, thus resolving a fundamental problem that has remained unsolved over
half a century. This enabled us to employ the maximum-stress hypothesis to deal with fracture
problem and the composite materials problem in a natural way. Recently, the same problems in
the papers [4–7] have been resolved in papers [8–10] by using the Schmidt method [11] and the
results are more accurate and more reasonable. In papers [12–15], the problems for a crack or
two cracks were investigated by using the non-local theory. To the author’s knowledge, analytical
treatment of two parallel symmetric cracks dynamic problem by using the non-local theory has
not been attempted.
For the above-mentioned reasons, the present paper deals with the dynamic problem of two

parallel symmetric cracks under harmonic anti-plane shear wave in an elastic plate by using the
non-local theory. The field equations of non-local elasticity theory were employed to formulate
and solve this problem. For overcoming the mathematical difficulties, one has to accept some
assumptions as in Nowinski’s works [16,17], one-dimensional non-local kernel function is used
to instead of two-dimensional kernel function for the anti-plane problem to obtain the stress
occur at the crack tips. Certainly, the assumption should be further investigated to satisfy the
realistic condition. The Fourier transform is applied and a mixed boundary value problem is
formulated. Then a set of dual integral equations is solved with the Schmidt method [11]. In
solving the equations, the gaps of the displacement along the crack surface are expanded in a
series of Jacobi polynomials. This process is quite different from that adopted in Eringen’s works
[4–7] and can overcome mathematical difficulty involved. The solution in this paper is accurate
and reasonable. The solution, as expected, does not contain the dynamic stress singularity near
the crack tips. The stress along the crack line depends not only on the crack length, the distance
between two parallel cracks, but also on the lattice parameter. However, the stress resulting from
the classical theory depends only on the crack length and the distance between two parallel
cracks.

2. Basic equations of non-local elasticity

According to the non-local theory, the stress at a point X in a body depends not only on the
strain at point X but also on those at all other points of the body. This observation is in ac-
cordance with atomic theory of the lattice and experimental observation of the phonon dispersion
[18]. Basic equations of linear, homogeneous, isotropic, non-local elastic solids, with vanishing
body force are:

skl;k ¼ q€uul; ð1Þ

skl ¼
Z
V

aðjX 0 � X jÞrklðX 0ÞdV ðX 0Þ; ð2Þ
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where

rijðX 0Þ ¼ kur;rðX 0Þdij þ l½ui;jðX 0Þ þ uj;iðX 0Þ	; ð3Þ

where the only difference from classical elasticity is in the stress constitutive equation (2) in which
the stress sklðX Þ at a point X depends on the strains eklðX 0Þ, at all points of the body. For ho-
mogeneous and isotropic solids there exist only two material constants, k and l are the Lame
constants of classical elasticity. q is the density of the elastic materials. aðjX 0 � X jÞ is known as
influence function, and is the function of the distance jX 0 � X j. The expression (3) is the classical
Hook’s law. Substitution of Eq. (3) into Eq. (2) and using Green–Gauss theorem, it can be ob-
tained:Z

V
aðjX 0 � X jÞ½ðk þ lÞuk;klðX 0; tÞ þ lul;kkðX 0; tÞ	dV ðX 0Þ �

Z
oV

aðjX 0 � X jÞrklðX 0; tÞdakðX 0Þ ¼ 0:

ð4Þ

Here the surface integral may be dropped if the only surface of the body is at infinity.

3. The crack model

It is assumed that there are two parallel symmetric cracks of length 2l in an elastic plate as
shown in Fig. 1. h is the distance between two cracks. In this paper, the harmonic anti-plane waves
are vertically incident. The z-axis is directed parallel to the crack’s edges such that only non-
vanishing displacement is the z-axis direction component, w ¼ wðx; y; tÞ. Let x be the circular
frequency of the incident wave. �s0 is a magnitude of the incident wave. In what follows, the time
dependence of all field quantities assumed to be of the form e�ixt will be suppressed but under-
stood. As discussed in [4–7,19], when the crack is subjected to harmonic anti-plane shear waves,
the boundary conditions on the crack faces at y ¼ 0 are (in this paper, we just consider the
perturbation stress field):

wð1Þðx; h; tÞ ¼ wð2Þðx; h; tÞ; sð1Þyz ðx; h; tÞ ¼ sð2Þyz ðx; h; tÞ; jxj > l; ð5Þ

wð2Þðx; 0; tÞ ¼ wð3Þðx; 0; tÞ; sð2Þyz ðx; 0; tÞ ¼ sð3Þyz ðx; 0; tÞ; jxj > l; ð6Þ

Fig. 1. Two parallel symmetric cracks in the plane.
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sð1Þyz ðx; h; tÞ ¼ sð2Þyz ðx; h; tÞ ¼ �s0; jxj6 l; ð7Þ

sð2Þyz ðx; 0; tÞ ¼ sð3Þyz ðx; 0; tÞ ¼ �s0; jxj6 l; ð8Þ

wð1Þðx; y; tÞ ¼ wð2Þðx; y; tÞ ¼ wð3Þðx; y; tÞ ¼ 0; ðx2 þ y2Þ1=2 ! 1: ð9Þ

Note that all quantities with superscript k ðk ¼ 1; 2; 3Þ refer to the upper half plane 1, the layer 2
and the lower half plane 3 as in Fig. 1, respectively. In this paper, we only consider that s0 is
positive.

4. The dual integral equations

According to the boundary conditions, Eq. (4) can be written as follows:

l
Z 1

�1

Z 1

�1
aðjx0 � xj; jy0 � yjÞr2wðx0; y0; tÞdx0 dy0 �

Z l

�l
aðjx0 � xj; 0Þ ryzðx0; 0; tÞ dx0

�
Z l

�l
aðjx0 � xj; hÞ ryzðx0; h; tÞ dx0 ¼ �qx2w; ð10Þ

where ryzðx; y; tÞ ¼ ryzðx; yþ; tÞ � ryzðx; y�; tÞ is a jump across the crack.
From the works [5,7], it can be obtained:

ryzðx; 0; tÞ ¼ ryzðx; h; tÞ ¼ 0 for all x: ð11Þ

Define the Fourier transform by the equations

�ff ðsÞ ¼
Z 1

�1
f ðxÞe�isxdx; ð12Þ

f ðxÞ ¼ 1

2p

Z 1

�1
�ff ðsÞeisxds: ð13Þ

For solving the problem, the Fourier transform of Eq. (10) with respect x can be given as follows:

l
Z 1

�1
�aaðjsj; jy0 � yjÞ ð

"
� s2Þ�wwþ o2 �ww

oy2

#
dy 0 ¼ �qx2 �ww: ð14Þ

What now remains is to solve the function w by using Eq. (14) and the boundary conditions. It
seems obvious that a rigorous solution of such a problem encounters serious if not unsur-
mountable mathematical difficulties, and one has to resort to an approximate procedure. In the
given problem, according to the assumptions as in Nowinski’s works [16,17], the non-local in-
teraction in y direction can be ignored. It can be given as
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�aaðjsj; jy 0 � yjÞ ¼ �aa0ðsÞdðy0 � yÞ: ð15Þ

As discussed in [7,16,17], it was taken

a0 ¼ v0 exp½�ðb=aÞ2ðx0 � xÞ2	 with v0 ¼
1ffiffiffi
p

p b=a; ð16Þ

where b is a constant (here b ¼ e0
ffiffiffi
p

p
=l; e0 is a constant appropriate to each material), a is the

lattice parameter. So it can be obtained

�aa0ðsÞ ¼ exp
"
� ðsaÞ2

ð2bÞ2

#
; ð17Þ

where �aa0ðsÞ ¼ 1 for the limit a! 0, so that Eq. (14) reverts to the well-known equation of the
classical theory.
From (14), we can derive

o2 �ww
oy2

� s2
 

� qx2

l�aa0ðsÞ

!
�ww ¼ 0; ð18Þ

whose solutions do not present difficulties, we have

�wwð1Þðs; yÞ ¼ A1ðsÞe�cy ðyP hÞ; ð19Þ

�wwð2Þðs; yÞ ¼ A2ðsÞe�cy þ B2ðsÞecy ðhP yP 0Þ; ð20Þ

�wwð3Þðs; yÞ ¼ A3ðsÞecy ðy6 0Þ; ð21Þ

where c2 ¼ s2 � x2=c2�aa0ðsÞ, c2 ¼ l=q, A1ðsÞ, A2ðsÞ, B2ðsÞ and A3ðsÞ are to be determined from the
boundary conditions.
The stress field, according to (2) and (3), is given by:

sð1Þyz ðx; y; tÞ ¼ � 2l
p

Z 1

0

�aa0ðsÞcA1ðsÞe�cy cosðsxÞds ðyP hÞ; ð22Þ

sð2Þyz ðx; y; tÞ ¼ � 2l
p

Z 1

0

�aa0ðsÞc½A2ðsÞe�cy � B2ðsÞecy 	 cosðsxÞds ðhP yP 0Þ; ð23Þ

sð3Þyz ðx; y; tÞ ¼
2l
p

Z 1

0

�aa0ðsÞcA3ðsÞecy cosðsxÞds ðy6 0Þ: ð24Þ

For solving the problem, the gap functions of the crack surface displacements are defined as
follows:
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f1ðxÞ ¼ wð1Þðx; hþÞ � wð2Þðx; h�Þ; ð25Þ

f2ðxÞ ¼ wð2Þðx; 0þÞ � wð3Þðx; 0�Þ: ð26Þ

Substituting Eqs. (19)–(21) into Eqs. (25) and (26), and applying the Fourier transform, it can
be obtained

�ff1ðsÞ ¼ ½A1ðsÞ � A2ðsÞ	e�ch � B2ðsÞech; ð27Þ

�ff2ðsÞ ¼ A2ðsÞ þ B2ðsÞ � A3ðsÞ: ð28Þ

Substituting Eqs. (22)–(24) into Eqs. (5)–(8), it can be obtained

½A1ðsÞ � A2ðsÞ	e�2ch ¼ �B2ðsÞ; ð29Þ

A2ðsÞ � B2ðsÞ ¼ �A3ðsÞ: ð30Þ

By solving four equations (27)–(30) with four unknown functions A1ðsÞ, A2ðsÞ, B2ðsÞ and A3ðsÞ
and applying the boundary conditions (5)–(8), it can be obtained:

Z 1

0

1

2
exp

�
� a

2s2

4b2

�
c½ �ff1ðsÞ þ expð�chÞ �ff2ðsÞ	 cosðsxÞds ¼

ps0
2l

; jxj6 l; ð31Þ

Z 1

0

1

2
exp

�
� a

2s2

4b2

�
c½expð�chÞ �ff1ðsÞ þ �ff2ðsÞ	 cosðsxÞds ¼

ps0
2l

; jxj6 l; ð32Þ

Z 1

0

�ff1ðsÞ cosðsxÞds ¼ 0; jxj > l; ð33Þ

Z 1

0

�ff2ðsÞ cosðsxÞds ¼ 0; jxj > l: ð34Þ

From (31)–(34), it can be obtained

�ff1ðsÞ ¼ �ff2ðsÞ ) f1ðxÞ ¼ f2ðxÞ; sð1Þyz ðx; h; tÞ ¼ sð2Þyz ðx; h; tÞ ¼ sð2Þyz ðx; 0; tÞ ¼ sð3Þyz ðx; 0; tÞ ¼ syz:

ð35Þ

Here we just solve the dual integral equations (31) and (33). Since the only difference between the
classical and the non-local equations is in the introduction of the function expð�a2s2=4b2Þ, it is
logical to utilize the classical solution to convert the system (31)–(34) to an integral equation of the
second kind which is generally better behaved. For a ¼ 0, then expð�a2s2=4b2Þ ¼ 1 and Eqs. (31)–
(34) reduce to the dual integral equations for same problem in classical elasticity. To determine the
unknown functions �ff1ðsÞ and �ff2ðsÞ, the dual-integral equations (31)–(34) must be solved.
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5. Solution of the dual integral equation

The dual integral equations can be considered to be a single integral equation of the first
kind with a discontinuous kernel [4]. It is well-known in the literature that integral equations
of the first kind are generally ill-posed in sense of Hadamard, i.e., small perturbations of the
data can yield arbitrarily large changes in the solution. This makes the numerical solution of
such equations quite difficult. In this paper, the Schmidt method was used to overcome the
difficulty. The gap functions of the crack surface displacement are represented by the following
series:

f1ðxÞ ¼ f2ðxÞ ¼
X1
n¼1

anP
ð1=2;1=2Þ
2n�2

x
l


 �
1

�
� x

2

l2

�1=2
for� l6 x6 l; y ¼ 0; ð36Þ

where an is unknown coefficients to be determined and P ð1=2;1=2Þ
n ðxÞ is a Jacobi polynomial [20]. The

Fourier transform of Eq. (36) are [21]

�ff1ðsÞ ¼
X1
n¼1

anGn
1

s
J2n�1ðslÞ; Gn ¼ 2

ffiffiffi
p

p
ð�1Þn�1 Cð2n� 1=2Þð2n� 2Þ! ; ð37Þ

where CðxÞ and JnðxÞ are the Gamma and Bessel functions, respectively.
Substituting Eq. (37) into Eqs. (31)–(34), respectively, Eqs. (33) and (34) have been automat-

ically satisfied, Eq. (31) reduces to the form for �l < x < l,

X1
n¼1

anGn

Z 1

0

c
2s
exp

�
� a

2s2

4b2

�
½expð�chÞ þ 1	J2n�1ðslÞ cosðsxÞds ¼

ps0
2l

: ð38Þ

For a large s, the integrands of Eq. (38) are almost decreases exponentially. So they can be
evaluated numerically by Filon’s method (see e.g., [22]). Eq. (38) can now be solved for the co-
efficients an by the Schmidt method [11]. For brevity, Eq. (38) can be rewritten as

X1
n¼1

anEnðxÞ ¼ UðxÞ; �l < x < l; ð39Þ

where EnðxÞ and UðxÞ are known functions and the coefficients an are to be determined. A set of
functions PnðxÞ which satisfy the orthogonality conditionZ l

�l
PmðxÞPnðxÞdx ¼ Nndmn; Nn ¼

Z l

�l
P 2n ðxÞdx ð40Þ

can be constructed from the function, EnðxÞ, such that

PnðxÞ ¼
Xn
i¼1

Min

Mnn
EiðxÞ; ð41Þ
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where Mij is the cofactor of the element dij of Dn, which is defined as

Dn ¼

d11; d12; d13; . . . ; d1n
d21; d22; d23; . . . ; d2n
d31; d32; d33; . . . ; d3n

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .
dn1; dn2; dn3; . . . ; dnn

2
666666664

3
777777775
; dij ¼

Z l

�l
EiðxÞEjðxÞdx: ð42Þ

Using Eqs. (39)–(42), we obtain

an ¼
X1
j¼n
qj
Mnj

Mjj
with qj ¼

1

Nj

Z l

�l
UðxÞPjðxÞdx: ð43Þ

6. Numerical calculations and discussion

From the works [8–10,12,23–25], it can be seen that the Schmidt method is performed satis-
factorily if the first 10 terms of infinite series to Eq. (39) are retained. The behavior of the
maximum stress stays steady with increase number in terms in Eq. (39). Although we can de-
termine the entire the stress field from the coefficients an, it is of importance in fracture mechanics
to determine the perturbation stress syz in the vicinity of the crack tips. syz along the crack line can
be expressed, respectively, as

syz ¼ � l
p

X1
n¼1

anGn

Z 1

0

½expð�chÞ þ 1	 c
s
exp

�
� a

2s2

4b2

�
J2n�1ðslÞ cosðsxÞds: ð44Þ

For a¼ 0 at x ¼ l, we have the classical stress singularity. However, so long as a 6¼ 0, the semi-
infinite integration and the series in Eq. (44) are convergent for any variable x. Eq. (44) gave a
finite stress all along y ¼ 0, so there is no stress singularity at the crack tips. At �l < x < l, syz=s0
is very close to unity, and for x > l, syz=s0 possesses finite values diminishing from a maximum
value at x ¼ l to zero at x ¼ 1. Since a=ð2blÞ > 1=100 represents a crack length of less than 100
atomic distances as stated by Eringen [6], and such submicroscopic sizes other serious questions
arise regarding the interatomic arrangements and force laws, we do not pursue solutions at such
small crack sizes. The lattice parameter and the wave velocity are just considered in this paper.
The semi-infinite numerical integrals, which occur, are evaluated easily by Filon and Simpson
methods because the rapid diminution of the integrands. The results are plotted in Figs. 2–13. The
following observations can be made from results:
(i) The maximum stress does not occur at the crack tip, but slightly away from it, as shown in

Figs. 11–13. This phenomenon has been thoroughly substantiated by Eringen [26]. The max-
imum stress is finite. The distance between the crack tip and the maximum stress point is very
small. This distance depends on the lattice parameter, the crack length and the circular fre-
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Fig. 3. The stress at the crack tip versus l for x=c ¼ 0:3, h ¼ 0:3, a=2b ¼ 0:0005.

Fig. 2. The stress at the crack tip versus xl=c for h=l ¼ 0:3, l ¼ 1:0, a=2bl ¼ 0:0005.

Fig. 4. The stress at the crack tip versus h=l for xl=c ¼ 0:3, l ¼ 1:0, a=2bl ¼ 0:0005.

Fig. 5. The stress at the crack tip versus xl=c for h=l ¼ 0:3, l ¼ 1:0, a=2bl ¼ 0:001.
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Fig. 6. The stress at the crack tip versus l for x=c ¼ 0:3, h ¼ 0:3, a=2b ¼ 0:001.

Fig. 7. The stress at the crack tip versus h=l for xl=c ¼ 0:3, l ¼ 1:0, a=2bl ¼ 0:001.

Fig. 9. The stress at the crack tip versus l for x=c ¼ 0:3, h ¼ 0:3, a=2b ¼ 0:008.

Fig. 8. The stress at the crack tip versus xl=c for h=l ¼ 0:3, l ¼ 1:0, a=2bl ¼ 0:008.
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Fig. 10. The stress at the crack tip versus h=l for xl=c ¼ 0:3, l ¼ 1:0, a=2bl ¼ 0:008.

Fig. 11. The stress along the crack line versus x=l for xl=c ¼ 0:3, l ¼ 1:0, h=l ¼ 0:3, a=2bl ¼ 0:0005.

Fig. 12. The stress along the crack line versus x=l for xl=c ¼ 0:3, l ¼ 1:0, h=l ¼ 0:3, a=2bl ¼ 0:001.

Fig. 13. The stress along the crack line versus x=l for xl=c ¼ 0:3, l ¼ 1:0, h=l ¼ 0:3, a=2bl ¼ 0:008.
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quency of the incident wave. Contrary to the classical elasticity solution, it is found that no
stress singularity is present at the crack tip, and also the present results converge to the clas-
sical ones for positions when far away from the crack tip.

(ii) The anti-plane shear stress at the crack tip becomes infinite as the atomic distance a! 0. This
is the classical continuum limit of square root singularity.

(iii) The value of the stress concentrations (at the crack tip) increase with increase of the crack
length, as shown in Figs. 3, 6 and 9. Noting this fact, experiments indicate that materials with
smaller cracks are more resistant to fracture than those with larger cracks. However, the stress
at the crack tip increases with increase of the distance between two parallel cracks. This phe-
nomenon is called crack shielding effect, as shown in Figs. 4, 7 and 10.

(iv) The stress increases with increase of the frequency of the incident wave, as shown in Figs. 2, 5
and 8. The anti-plane shear stress at the crack tip increases with decrease of the lattice param-
eter.

(v) The significance of this result is that the fracture criteria are unified at both the macroscopic
and microscopic scales.
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